
 
 

TRM 1006 - Key-Length-Value (KLV) Users Guide Page  Page 1 of 14 
 

 
 

Technical Reference Material  
 
Key-Length-Value (KLV) Users Guide 

MISB TRM 1006 

13 July 2012 

 

1 Why KLV 
The Problem 
All communications channels have bandwidth limitations; thus, efficient methods for 
representing data traveling over a bandwidth-constrained channel that are robust to both loss and 
corruption are necessary.  Representation of data must also allow for the “uneducated” 
application.  Ideally, even an application with limited knowledge regarding the data should be 
provided with sufficient information to do so anyway. 

Further complicating matters is the remote platform.  Different platforms have different ways of 
representing primitive data types.  A big-endian integer, for example, will have a very different 
value on a little-endian machine.  Similar issues exist for floating point, strings, and many other 
primitive data types.  The data-in-motion representation must allow for and provide a way to deal 
with these issues. 

Solutions 
Techniques developed to represent data in motion are called encodings.  There are three common 
approaches to representing (encoding) data for transport: unstructured, structured and semi-
structured. 

Free text is a common example of unstructured data.  It has the advantage of being very flexible 
and very robust.  Free text can express almost any concept in a manner that is comprehensible to 
most people.  Even if sections of the message are corrupt or missing, the concept can still get 
through.  However, unstructured data is very difficult for computers to process. 

Structured data have a well-defined and predictable structure and meaning.  National Imagery 
Transmission Format (NITF) is an example of structured data.  Structured data are an effective 
way to exchange complex information between computer systems.  Missing or corrupted data, 
however, can throw off the parsing algorithm, making the data unusable.  While efficient, 
structured approaches are also brittle. 

Semi-structured data lies midway between these two.  This approach provides structure to the 
data, but that structure is self-describing.  For example, XML is a semi-structured encoding 
approach.  Every element in an XML document has an opening and closing tag.  The structure of 
the document and included elements are defined in an external XML schema document.  If the 
parser can process the contents of the element then it does so.  If the parser does not know how 
to process that element or the element is corrupted, then the processor can just skip that element 
and continue processing.  This combination of structure and flexibility makes semi-structured 
approaches ideal for large-scale distributed processing systems. 
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All XML data are encoded using text characters.  In addition, each element has both an opening 
and closing text tag.  As a result, XML documents tend to be very large, given the amount of 
data that they carry.  This overhead is unacceptable for real-time and communications-
challenged environments.  Key-Length-Value (KLV), on the other hand, is designed for these 
environments.  (KLV) is another approach to semi-structured data.  KLV data is encoded using 
efficient binary encoding techniques developed for the Abstract Syntax One (ASN-1) 
specification.  Rather than an opening and closing tag, KLV uses an opening tag followed by a 
length field and then the data.   KLV management and encoding techniques allow further 
optimization by reducing or eliminating the key and length fields.  The result is a much higher 
data versus overhead ratio than is typical of XML.   

2 Introduction to KLV 
The fundamental KLV unit is the data element.  A KLV data element consists of three parts, the 
key, the length, and the value (data).  In its most fundamental form, the key is a Universal Label 
(UL), which is a unique 16-byte value that defines the element.  The UL plays a critical role in 
defining both the structure of the element and the meaning of the data.  For example, the UL 
06.0E.2B.34.01.01.01.03.07.02.01.01.01.05.00.00 indicates to the parser that this data element is 
the UNIX Time Stamp element as defined in the MISB registry.   

While all KLV elements must map to a UL, the key itself does not have to be a UL (a discussion 
of alternate key forms is in §5.)  Following the key is the length component.  The length value 
specifies the length in bytes of the value section.  The length value is usually OID encoded (see 
§6.2) to minimize its size.  However, alternate encoding techniques are also allowed (see §6.2).  
The final component is the value component.   Value is a sequence of “length” bytes of data that 
are interpreted based on the UL value.  In the example of the UNIX Time Stamp (Figure 1), the 
value is a 64-bit integer that represents microseconds since January 1, 1970.  

 
Figure 1: KLV Element Example 

 

KLV data elements are packaged in KLV Protocol Data Units (PDU).  Each PDU organizes 
KLV data elements into a complete body of information.  PDUs are usually tagged with a time 
stamp asserting that this is the data as it existed at a specific date and time.  Time stamps also 
allow correlation of KLV PDUs with other data, such as, video and audio.  
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Figure 2: KLV PDU Example 

 

A collection of KLV elements and PDUs compose a KLV stream that typically is packaged with 
motion imagery in a MPEG-2 Transport Stream container and transported over a connectionless 
protocol such as UDP/IP or RTP/UDP/IP, or directly over RTP/UDP/IP. 

Multiplexing techniques, such as MPEG-2 Transport Stream, combine multiple data streams, 
such as KLV, motion imagery, and audio for carriage as a single entity.  Such methods assume a 
KLV time stamp to correlate KLV metadata with associated video and audio frames.  The 
constituent streams are then de-multiplexed at the receiving end, decoded, and synchronized to 
provide an integrated picture (voice, video, and metadata) to the viewer. 

 
Figure 3: MPEG-2 Transport Stream 

3 The Rules 
KLV is a self-describing, highly-efficient encoding for streaming data.  The following rules 
assure that any KLV stream is self-describing, highly efficient, and supports streaming transport.  
Three golden rules are: 

Rule #1:  KLV is left-to-right deterministic: KLV supports streaming transport protocols.  
As such, it is impossible for the parser to look ahead or back in the data stream.  
The knowledge necessary to process the next byte must be available to the parser 
now.  Therefore, the KLV stream must always provide the information necessary 
to process a data element prior to the element itself.   

Rule # 2:  KLV uses the minimum overhead necessary: KLV is designed for real-time 
and bandwidth challenged applications.  It can only fill this role if it is very 
efficient in its use of bandwidth, memory, and processing power.  Well-designed 
KLV should take every opportunity available to reduce the overhead associated 
with encoding and processing the data. 
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Rule #3:  KLV is unambiguous: Registries external to the data stream maintain the KLV 
types and keys.  These registries provide the authoritative definition of the syntax 
and semantics of a KLV UL and the associated data element.  A KLV parser 
should never be in doubt as to what a KLV data element means and how to 
process it.  However, that does leave the door open for one additional source of 
ambiguity.  A KLV PDU contains a complete body of information.  If a KLV key 
appears twice in a PDU, which value is the right one?  To address this issue the 
concept of KLV Context is needed. 

KLV elements are independent instances of information.  There is nothing in KLV that states 
that two KLV elements are associated.  However, the structure of the PDU and stream implies 
associations amongst KLV elements.  For example, a Sensor Latitude element and a Sensor 
Longitude element are not required to be two components describing the sensor position.  If both 
elements appear in the same PDU, however, then that association is implied by their proximity in 
the data structure.  Therefore, if KLV elements have an implied association due to their position 
in the data structure, then they share the same KLV context.  Likewise, a KLV context is a 
structural element of the KLV data that implies association of its constituent KLV elements.  
KLV contexts are typically defined by the boundaries of the PDU or, in the case of complex 
data, the value field of their parent KLV element. 

 
Figure 4: KLV Context Example 

 
Having defined the concept of KLV context, a corollary to Rule #3 follows: 

Corollary One (1) to Rule #3: a KLV key will appear once and only once in a KLV context. 

4 KLV Parsing 
KLV is a self-describing encoding method.  That does not mean that the KLV stream must carry 
all of the information needed to process the stream.  Rather, it means that there must be sufficient 
information for the processor to identify the appropriate external information sources and know 
how to use those sources. 
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KLV is left-to-right deterministic (Rule #1).  The encoding of that information, therefore, must 
be left to right as well.  The KLV key is critical to providing this information.  Each KLV key 
maps to a sixteen (16) byte Universal Label (UL).  These labels identify the external resource 
that manages the supporting information for that element, how the length field is encoded, and (if 
this is not a simple triplet) the structure of the following KLV data.  

For KLV, those external resources are KLV registries.  Two registries matter: 1) the Society of 
Motion Picture and Television Engineers (SMPTE) maintains a registry in its document SMPTE 
RP 210.10-2007; and 2) the Motion Imagery Standards Board (MISB) maintains a registry on the 
MISB Web site (www.gwg.nga.mil/misb).  Unfortunately, these registries are not machine-
readable.  Their information content must be built into the encoding and decoding logic. 

5 KLV Structures   
Rule #2 states that “KLV uses the minimum overhead necessary.”  Yet, with a sixteen (16) byte 
key, a one (1) byte length field, and a four (4) byte value, KLV requires twenty-one (21) bytes to 
encode a four byte (integer) value.  That is hardly low overhead.  There are, however, a number 
of established techniques to reduce the overhead of a KLV PDU.  In addition, as long as the rules 
are complied with, other constructs can be built. 

KLV structures can reside in the value field of a KLV triplet.  There must be at least one full 
“root” KLV triplet in any PDU.  The value field of this triplet can itself be a structure.  The 
length of this “root” element is the length of the enclosed structure.  The elements of that 
structure may in turn contain KLV structures ad infinitum.  When fully exploited, a valid KLV 
PDU might contain only one full sixteen-byte key. 

5.1 Universal Data Sets 
Universal Data Sets are composed of elements that use a full sixteen-byte UL as the key.  This 
appears to violate Rule #2 – to use the minimum overhead necessary – but there are valid uses 
for this structure in light of Rule #3 – to be unambiguous.  Consider an element for sensor name.  
Suppose there is more than one sensor within a PDU; under Rule #3 this element can only be 
used once to avoid ambiguity.  However, by packaging the elements for each sensor in its own 
Universal Data Set the association of sensor name with sensor is unambiguous.  In short, the 
potentially ambiguous element is within its own KLV context, and therefore it is legal under 
Rule #3.    

Advantages: 
Groups related data elements, eliminating ambiguity 
UL can be constructed from available data with no need to reference outside resources 

Disadvantages: 
No reduction in overhead 

 

http://www.gwg.nga.mil/misb
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Figure 5: Universal Set Example 

5.2 Global Data Sets 
Global Data Sets reduce the size of KLV keys by taking advantage of the case where all of the 
ULs of the data elements in a group have the same high-order key values.  The resulting keys are 
the unique subsets of the full sixteen-byte UL.  For example, consider a group made from 
elements that all have ULs that fit the pattern 06.0E.2B.34.01.01.01.01.*.*.*.*.*.*.*.*.  The keys 
of the Global Data Set have to fill in the values only for the missing elements.  This approach 
allows reconstruction of a full UL from the Global Data Set UL and the Global Data Set element 
keys.  

Advantages: 
Groups related data elements, eliminating ambiguity.    
UL can be constructed from available data with no need to reference outside resources 
Reduces overhead 

Disadvantages: 
Elements of the set must share the same values in the high-order bytes of their ULs. 

 

 
Figure 6: Global Data Set Example 

 



 
 

TRM 1006 - Key-Length-Value (KLV) Users Guide Page  Page 7 of 14 
 

5.3 Local Data Sets 
Local Data Sets (LDS) go one-step further by moving the UL-to-data-element mapping to an 
external document.  An index value (tag) is assigned to each element in the LDS.  Typically, a 
tag is only one byte long.  The controlling document maps each index value to a corresponding 
UL.  To process an LDS element, the parser refers to the controlling document to retrieve the 
associated UL.  It then has the complete UL-Length-Value triplet it needs to proceed with 
processing.  

Advantages: 
Groups related data elements, eliminating ambiguity 
Reduces overhead through the use of very small tags 
Can include any data element in any order 

Disadvantages: 
The encoder/decoder logic must know or can access at run time the tag-to-UL mappings. 

 

 
Figure 7: Local Data Set Example 

5.4 Variable Length Packs 
Variable Length Packs further reduce overhead by eliminating the key altogether.  By defining a 
specific sequence for the elements of the pack1, the position in that order maps back to the UL 
for that data element.  This approach is similar to that of the LDS except that the tag value is 
implicit. 

 
Advantages: 

Groups related data elements, eliminating ambiguity 
Reduces overhead through the elimination of tags 
Can include any data element 

Disadvantages: 
The encoder/decoder logic must know or can access at run time the sequence-to-UL mappings. 
All elements must be included and they must be in the specified order, much like “structured” 

                                                      
1 SMPTE 336m does not formally differentiate between the terms “pack” and “set” (or “data set”).  In usage, they 
are equivalent. 
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data. 
 

 
Figure 8: Variable Length Pack Example 

5.5 Defined Length Packs 
Defined Length Packs build on Variable Length Packs by eliminating the length field.  This is 
accomplished by either defining the length of the element in the controlling document that 
defines the sequence-to-UL mapping, or by encoding the element in such a way that the length is 
a part of the encoding process.  OID encoding, for example, is a common way to do this.   

Advantages: 
Groups related data elements, eliminating ambiguity 
Reduces overhead through the elimination of tag and length fields 
Can include any data element 

Disadvantages: 
The encoder/decoder logic must know or can access at run time the sequence-to-UL mappings. 
The length of each element must be either defined in the controlling document or the element itself 
must be encoded so as to include the length of that element 
All elements must be included, and they must be in the specified order, much like “structured” data. 

 

 
Figure 9: Defined Length Pack Example 
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5.6 Truncation Packs 
Truncation Packs are not formal KLV structures.  Rather, they are a technique that takes 
advantage of KLV encoding to mitigate one of the disadvantages of using Packs.  Both Variable 
Length and Defined Length Packs require that all of the possible elements must be included in 
each pack.  However, there is sufficient information in the encoding of a Pack to remove some of 
the elements and still comply with the three rules. 

Each element of a pack has a length encoded with it or defined in an external document.  The 
sum of those lengths is the total length of the Pack.  This value is captured in the length field of 
the Pack itself.  There is no rule that requires that the sum of the expected element lengths and 
the Pack length field agree.  In fact, if we drop the last few elements of a Pack, and update the 
length to account for just those that are present, the Pack will process just fine.  The application 
of this principal is what is referred to as a Truncation Pack. 

The rules for implementing a Truncation Pack are as follows: 
1) Start with the elements to be used in a Variable Length or Defined Length Pack. 
2) Assign each element of that Pack a priority, from highest to lowest. 
3) Populate the elements of the Pack in decreasing priority, optionally omitting one or more 

of the lowest priority elements.  Note that no element may be omitted unless all elements 
of lower priority are also omitted; “skipping” elements is not permitted. 

4) Calculate the total length of the elements that were populated. 
5) Store the calculated length in the Pack length field. 
 

Advantages: 
Groups related data elements, eliminating ambiguity 
Reduces overhead through the elimination of tag and (in defined length packs) length fields 
Reduces overhead of populating data elements that would contain no valid information 
Can include any data element 

Disadvantages: 
The encoder/decoder logic must know or can access at run time the sequence-to-UL mappings. 
The length of each element must be either defined in the controlling document or the element itself 
must be encoded so as to include the length of that element 
Elements must be defined in order of decreasing priority.  If a low priority element is populated, higher 
priority elements must be populated even if there is no valid information to populate them with. 

 

 
Figure 10: Truncation Pack Example 
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5.7 Types 
To accommodate handling of commonly occurring aggregations of data elements, SMPTE Draft 
CD2003 provides for the definition of KLV “types”.  A type is a KLV structure made up of a 
defined set of related KLV elements.  For example, the elements Latitude, Longitude, and 
Height, which almost always appear together, could be grouped into a type.  Type definitions are 
maintained in a KLV Types Dictionary. 

Types are organized into classes.  A summary of the most relevant classes are in Table 1.  

Class Description 
Basic Types Classic computer science data types (“byte strings”) 
Enumerated Types Lists (“enumerations”) of specific valid values, similar to C enum 
Record Types Fixed structures(“records”), similar to C struct and XML sequence 
Multiples Arrays 
Reference Types “Pointers” to other types 
Choice Types Alternate types, similar C union and XML choice 
Group Types Collections, similar to C++ class and XML complexType constructs 

Table 1: Classes of KLV Types 
 
A full treatment of KLV types is beyond the scope of this paper, partially because the applicable 
specifications are still in work.  

6 KLV Encoding Techniques 

6.1 Universal Labels (UL) 
KLV identifies each data element with a sixteen (16) byte Universal Label (UL).  The Society of 
Motion Picture and Television Engineers (SMPTE) or a designated registry authority registers 
each UL to assure its uniqueness and validity.   

Byte Field Description 
Universal Label Header 

1 OID Object identifier – always 0x06 
2 UL-Size 16-byte size of the UL – always 0x0E 

UL Designator 
3 UL Code Concatenated sub-identifiers ISO, ORG – always 0x2B  
4 SMPTE Designator SMPTE sub-identifier – always 0x34 
5 Category Designator Category designator identifying the category of registry described 
6 Registry Designator Registry designator identifying the specific registry in a category 
7 Structure Designator Designator of the structure variant within the given registry designator 

8 Version Number Version of the register that first defines the item.  The item will appear 
in that and all later versions. 

Item Designator 

9-16 Item Designator Unique identifier for the particular item within the context of the UL 
Designator. 

Table 2: Universal Label Format 
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The sixteen-byte UL serves as more than a unique identifier.  It also encodes information useful 
for the processing of the KLV element.  A breakdown of that information and how it is encoded 
in the UL format follows: 

Bytes 1 – 4:  Bytes one (1) through four (4) are always the same.  They designate this UL as 
being part of the key space managed by the SMPTE. 

Byte 5, Category Designator: Byte five (5) identifies the category of the element: 

1 = Dictionaries – Definitions of individual data elements. 
2 = Groups – Definitions of sets (groups) of data elements, such as a Set or a Pack. 
3 = Wrappers and Containers – Definitions of frameworks for collections of information. 
4 = Labels – Definitions of descriptions that augment ULs. 

Byte 6, Registry Designator:  Byte six (6) is divided into bit fields each with its own content. 

Bits 0 – 2 (0x00 through 0x07) indicate the type of dictionary, group or container.  Table 3 
illustrates how bytes five (5) and six (6) work together to identify a resource type.  

Byte 5 Byte 6 Byte 7 Meaning 
Dictionaries 

0x01 0x01 0x01 Metadata dictionary - SMPTE 
0x01 0x01 0x04 Metadata dictionary – MISB 
0x01 0x04 0x01 Types dictionary - SMPTE Draft CD2003 

Groups (Sets and Packs) 
0x02 0x01  Universal Set – SMPTE 395M 
0x02 0x02  Global Set – SMPTE 395M 
0x02 0x03  Local Data Set – SMPTE 395M 
0x02 0x04  Variable Length Pack – SMPTE 395M 
0x02 0x05  Defined Length Pack – SMPTE 395M 

Wrappers and Containers 
0x03 0x01  Simple Wrappers and Containers 
0x03 0x02  Complex Wrappers and Containers 

Labels 
0x04  0x01 Labels Register – SMPTE 400M 

Table 3: Universal Label Byte Meanings 
 
Bits 3 - 6 (0x08 through 0x78) indicate how the length field is encoded.  The valid values for 
these bits are shown in Table 4.  Since the MISB prefers to use BER-OID encoding for length 
values, this field will usually be zero (0). 

Byte 6,  
Bits 3 - 6 

Encoding method 

0x00 BER-OID Encoded (unlimited) 
0x01 1 Byte (255 max) 
0x02 2 Bytes (65535 max) 
0x03 4 Bytes (232 – 1 max) 

Table 4: Length Encoding Methods 
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Byte 7, Structure Designator: Byte seven (7) is specific to the registry.  We will not elaborate 
on this value here. 

Byte 8, Version Number: Byte eight (8) is the version number.  Direction from SMPTE is that 
this byte should be ignored. 

Bytes 9 and 10, Item Designator: The observant reader may have noticed that the UL for Sets, 
Packs and Wrappers does not provide any way to determine where the element is registered.  
Bytes nine (9) and ten (10) have been appropriated for that purpose.  If byte 9 is not equal to 
0x0E, the UL is registered with SMPTE.  If byte nine is 0x0E and byte 10 is 0x01, 0x02 or 0x03, 
then the UL can be found in the MISB registry.  If byte 9 is 0x0E and byte 10 is not 0x01, 0x02 
or 0x03, then the element is privately registered somewhere else. 

6.2 Basic Encoding Rules (BER) 
Rule #2 states that “KLV is left-to-right deterministic.”  This rule poses a dilemma for the parser 
that has just received a byte of data.  “How many bytes should I read before trying to process this 
data item?”  In many cases, such as the value field of a KLV element, that information has been 
established ahead of time.  That is not always the case.  BER encoding is a family of techniques 
to embed the length of a data item within the item itself.  In this way, the parser has sufficient 
information from the data itself to process the element properly. 

BER-OID (BER “Object IDentifier”2) encoding allows values of any length to be encoded 
together with information about the length of the value.  The value is encoded using a series of 
binary octets (bytes) where the 1st bit (msb) of each byte indicates whether or not that byte is the 
last byte in the series.  If the 1st bit is set (1) then the remaining 7 bits form part of the value but 
there are more bytes to follow.  If the 1st bit is not set (0) then the next 7 bits are the least 
significant 7 bits of the value and this is the last byte in the series.  

BER Short Form is used in the length field for data elements shorter than 128 bytes.  These 
fields are represented using a single byte (8 bits).  The high-order bit of this element is always set 
to zero (0).  The remaining seven (7) bits contain the length of the following data element.  An 
observant reader will notice that BER Short Form is identical to BER-OID for values less than 
128. 

BER Long Form is used in the length field for data elements longer than 127 bytes.  These 
fields are represented using a number of bytes with the first byte containing the count of bytes to 
follow.  The high order bit of the first byte is always set to one (1).  All of the bits in the 
following bytes are used.   

6.3 Universal Identifier Encoding 
The UI is BER-OID encoded.  Since the UI is made up of single byte values and each byte has a 
value less than 0x7F, the high order bit is never used, so the BER-OID encoding is the same as if 
it weren’t encoded at all. 

                                                      
2 Use of the term “Object IDentifier” (OID) is somewhat unfortunate, because BER-OID encoding can be used for 
any type of value, not just an OID. 
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6.4 Bit and Byte Ordering 
All KLV data is represented using big-endian encoding – Most Significant Byte (MSB) first.  
Bytes are big-endian bit encoded – most significant bit (msb) first. 

6.5 Floating Point Encoding 
KLV does not support the direct encoding of floating-point numbers.  Floating-point values must 
be converted to integer prior to encoding them.  SMPTE has no standard for how to perform this 
conversion.  However, scaling floating-point values into suitable integer equivalents is a 
common practice.   This approach takes advantage of advance knowledge of the range of valid 
values for the number to create an unsigned integer that maintains the desired level of precision 
while minimizing bandwidth. 

A number of MISB documents define the floating point to integer mappings to be used for 
parameters defined within.  Alas, there are some subtle differences among these approaches.  To 
provide consistency, the MISB has developed RP 1201 Floating Point to Integer Mapping, 
which defines a standard approach.  The description of float-to-integer mapping that follows 
should be considered merely illustrative.  Consult RP 1201 for an authoritative specification. 

Scaled Encoding of Floating Point Values – NOTIONAL: 
Scaled encoding takes advantage of three items of information known about the floating-point 
value: 

1) Maximum floating-point value (max_float), the limit beyond which we will not see any 
valid data. 

2) Minimum floating-point value (min_float), the limit below which we will not see any 
valid data. 

3) Encoding integer size (int_size), the number of bits used to encode the floating-point 
value.  [Keep in mind that BER-OID encoding reserves the high order bit of each byte.  
Thus, for BER-OID encoding, int_size should be a multiple of seven (7), or the bits 
available from each byte.] 

With these values, calculate the encoding scale factor (encode_fctr), decoding scale factor 
(decode_fctr) and the precision factor (precision_fctr). 

float_range = max_float – min_float 
integer_range = (2 ** int_size) - 1 
encode_fctr = integer_range / float_range 
decode_fctr = float_range / integer_range 
precision_fct = 0.5 * decode_fctr 

Using these factors, encode the floating-point value f_val as an integer value i_val: 
i_val = ((f_val – min_float) + precision_fctr) * encode_fctr 

The first step is to subtract the minimum floating-point value from f_val.  This shifts the range of 
floating-point values to align with the range of unsigned integer values by shifting min-float to 
align with zero (0).   
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Next the precision factor is added.  When converting a floating-point value to integer, the least 
significant digits are lost.  This has the effect of always rounding down.  For example, the 
floating-point value 7.9 becomes the integer 7 when we drop the fraction.  Adding the precision 
factor causes the conversion to round properly.  For example: 

7.9+0.5 (the precision factor) = 8.4 which converts to 8 (integer) 

7.4+0.5 = 7 which converts to 7 (integer) 

Finally, multiply the adjusted floating-point value by the encoding factor to scale the floating-
point range to match the unsigned integer range.  The scaled and aligned floating-point value is 
now convertible to unsigned integer. 

To convert the integer back into floating-point again:  
f_val = (i_val * decode_fctr) + min_float 

This reverses the previous process by first scaling (i_val * decode_fctr) then shifting (+ 
min_float) the integer value back into a floating-point value.  The precision factor is not applied 
in this case, since there is no rounding effect in the conversion.   
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